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S u m m a f f  

The differential equation f ' "  + i f "  + ~kf '2 = 0 (where dashes denote differentiation with respect to the indepen- 
dent  variable 7/) subject to the boundary conditions f (0)  = 0, f ' (oo) = 0 and either f ' (0)  = 1 or f"(0)  = - 1  is 
considered. It is shown that by using p - = f '  as dependent variable and q , = C - f  (where C = f (oo ) )  as 
independent variable and then expanding in powers of q~, a very good approximation to the solution can be 
obtained using only a few terms in the expansion. 

1. Introduct ion  

The differential equation 

d3f , ; d 2 f  
d~ 3 t j~--~2 = 0 (1) 

subject to boundary conditions that 

d___f= 
f = 0 ,  d~/ 1 on 7 = 0 ;  d~ldf~0 as ~1~o0, (2) 

has arisen in several contexts. For example, its solution is required in the problem of a 
boundary layer on a moving wall (Ackroyd [1]), in magnetohydrodynamic free convection 
(Singh and Cowling [9] and Riley [7]), in free convective flows in saturated porous media 
(Cheng [3] and Merkin [5]) and in thermally driven cavity flows in porous media (Blythe et 
al. [2]). The equation has to be solved numerically. However, we show that it is possible to 
obtain a solution in the form of a series expansion, relatively few terms of which are 
required to give good agreement with the exact solution (obtained by numerical integra- 
tion). In fact the first four terms give a better approximation for (d2f/d~2)o than that 
obtained numerically by Singh and Cowling. Thus we can produce a good approximation 
for f for all ~ and have good estimates for starting any numerical integration of the two 
point boundary value problem given by (1) and (2). 

31 



32 

We consider the slightly more general problem 

dr/3 ~dr/2 

again subject to boundary conditions (2), and where h is a parameter. From (2), we have 
that, as ,/---} oo, f ~  C where C is some constant to be determined. The method of solution 
is to first transform equation (3) into one which has ~ = C - f  as independent variable and 
p = d f / d ~ l  as dependent variable. Then p is expanded as a power series in ~; application 
of the condition that p = 1 on 7/= 0 (i.e~ ~ = C) determines C, with (d2f/dT/2)o de- 
termined from 

) oo d f  2 
d2f = ( X - 1 ) f  ° ( ~ - ~ ) d * / = ( X - 1 ) f o C p d q ~  (4) 
dr/2 o 

which is obtained by an integration of Eqn. (3). 
The problem of solving Eqn. (3) subject to the boundary conditions that 

f = 0 ,  d 2 f = - I  on ,/  0; d f  = - - - * 0  as , / ~ o o ,  (5) 
d,/2 d~/ 

can be treated in a similar way. This arises, for example, when a heat flux boundary 
condition is applied in the problem of free convection in a porous medium and has been 
solved numerically for h = - ½ by Merkin [6]. 

2. First problem 

Here we are concerned with Eqn. (3) subject to boundary condition (2). Before proceeding 
to obtain an approximate solution for any ), we note that there are the closed form 
solutions f =  1 - e -n for ~ = - 1  (Riley [8]) and 

f =  !/~-(1 - e -¢~n ) 

1 + e  - ¢ ~  

for ), = 1 and that when ~ = 2 there is no solution of Eqn. (3) which satisfies (2) *. In 

* On multiplying by f, Eqn. (3) can be integrated once when A = 2 to give 

fd2f  1 [ df'~ 2 2 d /  
~ 2  - 2 ~ d"~ ] + f  ~--'~ = constant. 

The constant of integration cannot be chosen to be compatible with the boundary conditions on both ~ = 0 
and as 71 ---, o0 as given by (2). 
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terms of p and ~ as dependent and independent variables respectively, Eqn. (3) becomes 

d [  d p )  _ ~  
aTlp  +)̀ p=O. (6) 

Where, as noted above, p = d f /d , / ,  C = limn+ ~f(7/) and ~ = C -  f. We now expand p in 
the form 

p = Alq5 + A 2 ~  2 + A3~b 3 + A 4 ~  4 + Asq5 5 q- . . . .  (7) 

By substituting expansion (7) into Eqn. (6) and equating like powers of ch we can obtain 
the coefficients A], A 2 . . . .  in turn. We find that 

1 + ) `  1 - ) `  2 
A 1 = C, A 2 4 ' A 3 -  72C ' (8) 

(1  - )`2)(1 + 2)`) (1 - )`2)(11 + 81)` + 88), 2) 
A 4 = , A5 = 

576 C 2 86400 C 3 

The condition that p = 1 when qa = C then gives 

C2[1 1 + ) `  1 - V  (1 -X2) (1  + 2 ) ` ) ( 1  - ) ` 2 ) ( 1 1 +  81)` + 88V) ] 
4 + ~  + 576 l- 86400 + ... = 1. 

(9) 

Equation (9) is then an equation which determines C. The skin friction (d2f/d~ 2)0 is then 
determined by using (4) which gives 

d2f I = C3()` - 1)[ 1 1 + )` 1 - )̀ 2 (1 - )`2)(1 + 2)`) 
d*/2 }o 2 12 ~- ~ "+ 2880 

(1  - )`2)(11 + 81)` + 88)` 2) l 
+ 

518400 ~- . . . .  ] (10) 

We can see that the terms in the series (9) and (10) rapidly decrease, suggesting that 
good estimates for C and the skin friction can be obtained with relatively few terms. This 
can be seen from Table 1 where, for X = 0, values of C and (d2f/d,/2)0 are given, being 
obtained by taking successively more terms in the series (9) and (10). It can be seen that 
these rapidly approach their computed values of 1.14277 and -0.62755 respectively. This 
is in contrast with the method employed by Ackroyd [1] who obtained an expansion valid 
for large 7/, requiring 17 terms to obtain an equivalent accuracy. Also, as can be seen from 
Table 1, the error in the series solution changes sign between the fourth and fifth 
approximations, suggesting that the series (7) could well be asymptotic. This point has 
been examined by considering the coefficient of the term of O(~ 6) in (7) for )` = 0. This is 
found to be - (115200C4)  -1, which is smaller than A 5 and different in sign to it. When 
this extra term is used in (9) and (10), these give 1~i4277 and -0.62755 (the numerically 
computed values) for C and f"(O) respectively. 
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Table 1. Values of C and (d2f/dr/2)o for X = 0 obtained by increasing the number of terms taken in series (9) 
and (10) 

Number of C ( d 2 f /  

terms ~ d7/2 ]0 

1 1.00000 -0.50000 
2 1.15470 -0.64150 
3 1.14416 -0.62929 
4 1.14286 -0.62766 
5 1.14276 -0.62754 

Values of C and ( d E f / d * / 2 ) 0  obtained from (9) and (10) for various values of ~ are 
given in Table 2 as well as their values obtained by solving the two-point boundary-value 
problem numerically. This has to be done iteratively, reasonable estimates for the 
unknown boundary conditions being needed for the process to converge. These were 
supplied by their approximate values obtained as above. We notice that the series method 
gives the correct value for ~, = 1 and ~ = - 1, and that the agreement with the numerically 
computed results is good for most of the values of ~ considered; for ~ = - 2 the errors in 
C and (dEf/d~/2)0 being 0.1% and 0.2% respectively. This error decreases as X increases 
from ~ = - 2 .  However, as we approach the case ~, = 2 the difference becomes greater, at 

= 1.8 the errors in C and (dEf/d,/2)0 are 7% and 19% respectively. This is to be expected 

Table 2. Values of C and (d2f/d*/2)o for various X obtained from series (9) and (10) and obtained numerically 

h Series Numerically 

(d2 ) (d2j/ 
C ~ d7/2 0 C k 07/2 ]o 

- 2 . 0  0.90648 - 1.28461 0.90563 - 1.28181 
- 1.8 0.92249 - 1.23150 0.92204 - 1.23009 
- 1.6 0.93974 - 1.17693 0.93957 - 1.17632 
- 1.4 0.95832 -1.12046 0.95824 - 1.12026 
- 1.2 0.97835 - 1.06164 0.97833 - 1.06160 
- 1.0 1.00000 -1.00000 1.00000 - 1 . 0 0 0 0 0  

- 0 . 8  1.02348 -0.93502 1.02348 -0.93501 
- 0 . 6  1.04908 -0.86610 1.04908 . . . .  -0.86609 
- 0 . 4  1.07715 -0.79253 1.07715 -0.79254 
- 0 . 2  1.10816 -0.71341 1.10817 -0.71343 

0 1.14276 -0.62754 1.14277 -0.62755 
,0.2 1.18179 -0.53326 1.18175 -0.53323 
0.4 1.22642 -0.42818 1.22629 -0.42808 
0.6 1.27827 -0.30869 1.27800 -0.30853 
0.8 1.33969 -0.16911 1.33933 -0.16900 
1.0 1.41421 0.00000 1.41421 0.00000 
1.2 1.50739 0.21539 1.50945 0.21616 
1.4 1.62858 0.50944 1.63839 0.51774 
1.6 1.79503 0.95274 1.83302 1.00913 
1.8 2.04319 1.72912 2.20605 2.14634 
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as the numerical solutions strongly indicate that the case ), = 2 (where there is no solution 
of (2) and (3)) is approached in a singular way. 

From Table 1 we can see that the first two terms in series (9) give a good estimate for C 
(being about 1% in error). This suggests that we can obtain an approximate expression for 
f (~ )  from the first two terms in (7) by a simple integration. On doing this we find that 

2 C(1 - e  - c " )  
C - - -  and f (~ / )=  (11) 

x/3 - )` 1 + ( C 2 _ 1 )  e c . "  

Equations (11) give the correct solution when ), = 1 and ), = - 1 .  On comparing (11) with 
the numerically calculated values we find, for ), = 0, that (11) is in error by at most 1%. 

It is interesting to contrast the method of solution given above with that used by 
Meksyn [4] on similar problems. The advantage of the present method is that C 2 factors 
out of the terms in the series in (9) and consequently only a simple calculation is required 
to obtain C (with f"(O) evaluated in a similarly straightforward way). However, to obtain 
successfully better approximations, Meksyn's method requires the solution of successively 
higher order algebraic equations, thus rendering his technique much less useful for the sort 
of problem given by Eqn. (3) with boundary conditions (2) or (5). 

3. Second problem 

Here we are concerned with the solution of Eqn. (3) subject to boundary conditions (5). 
We notice that there are special cases; when ), = - 1, f =  1 - e-n and when ), = 1 there is 
no solution which will satisfy (5). Again we start from Eqn. (6) with the coefficients in 
expansion (7) still being given by (8). The difference is in the application of the boundary 
conditions. Using (4) we have now that 

(1-) ,)fo%dq~ = 1 (12) 

which we use to determine C. This gives 

1 1 + ) ,  1 - ) ,  2 ( 1 - ) , 2 ) ( 1 + 2 ) , )  
(1 - ) , ) C  3 2 1-2- + ~ +  2880 

+ (1 - X2)(11 + 81X + 88X2) l 
518400 + .. .  = 1. (13) 

Equation (13) confirms that there is no solution when X = 1. The value of (d f /d~)0  is then 
found from 

{df] =C2[ 1 1 + ~  1 - ) `  2 ( 1 - ~ 2 ) ( 1 + 2 ) ` )  
~ ) [ ~  0 4 t - ~ +  576 

+ (1 - X2)(ll + 81)` + 88X2) 1 
86400 + . . . .  (14) 
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Table 3. Values of C and (df /d~/)  0 for various h as obtained from (13) and (14) and obtained numerically 

Series Numerically 

- 2.0 0.83388 0.84622 0.83369 0.84746 
- 1.8 0.86063 0.87038 0.86053 0.87105 
- 1.6 0.89007 0.89708 0.89002 0.89739 
- 1.4 0.92266 0.92698 0.92264 0.92709 
- 1.2 0.95903 0.96091 0.95902 0.96093 
- 1 . 0  1 . 0 0 0 0 0  1 . 0 0 0 0 0  1 . 0 0 0 0 0  1 . 0 0 0 0 0  

- 0.8 1.04667 1.04581 1.04666 1.04581 
- 0.6 1.10057 1.10058 1.10057 1.10058 
- 0.4 1.16400 1.16768 1.16396 1.16767 
- 0.2 1.24020 1.25249 1.24020 1.25247 

0 1.33478 1.36429 1.33478 1.36427 
0.2 1.45734 1.52069 1.45733 1.52074 
0.4 1.62715 1.76028 1.62713 1.76056 
0.6 1.89138 2.18935 1.89132 2.19012 
0.8 2.42259 3.27003 2.42250 3.27151 
0.9 3.07906 5.01432 3.07897 5.01608 

Values of C and (df/d~/)0 determined from (13) and (14) and obtained by a numerical 
solution of the problem are given in Table 3. Again we can see that there is very good 
agreement between the approximate values and the numerically Computed values, with the 
largest percentage error occurring at ~, = - 2  (C and (df/d~l)0 being in error by about 
0.02% and 0.15% respectively there). The results agree very well even close to the critical 
case X = 1, and over much of the range of ~, considered the difference between the series 
solution and the computed values is extremely small. The method appears to give better 
agreement for this problem than for the first one considered. This is perhaps to be 
expected as the terms in series (13) (for the determination of C) decrease more rapidly 
than those in (9). In fact the first two terms in (13) and (14) give values for C and 
(df/dT/) 0 for h = 0 as 1.33887 and 1.34442, being in error by 0.3% and 1.5% respectively. 
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